Study on Associations between Root and Aboveground Growth of Mixed-Planting Seedlings of Populus tomentosa and Pinus tabuliformis under Soil Nutrient Heterogeneity

Author:

Wei Xi12,Yao Jiafeng1,Guo Yu1,Sui Xiang1,Lv Xiao1,Liu Xiaoman1,Dong Yuan1,Liang Wenjun1

Affiliation:

1. College of Forestry, Shanxi Agriculture University, Jinzhong 030801, China

2. Ji County Station, Chinese National Ecosystem Research Network (CNERN), Beijing 100083, China

Abstract

Near-natural transformation can convert artificial monoculture forests into mixed forests with diverse ages, multi-layered structures, and enhanced ecological functions. This transformation optimizes stand structure, improves soil physical and chemical properties, and enhances stand productivity and species diversity. This study aimed to explore the relationship between the underground roots and aboveground growth of Pinus tabuliformis and Populus tomentosa under conditions of nutrient heterogeneity, with the goal of advancing plantation transformation. This research focused on 1-year-old Populus tomentosa and 5-year-old Pinus tabuliformis, employing two planting densities (25 cm and 50 cm) and three fertilization levels, low (50 g·m−2), medium (100 g·m−2), and high (200 g·m−2), using Stanley Potassium sulfate complex fertilizer (N:P:K = 15:15:15). Each treatment had three replicates, resulting in a total of nine experimental groups, all planted in circular plots with a radius of 1 m. Standard major axis (SMA) regression was used to analyze the allometric relationship between underground fine root biomass and aboveground organ biomass. This study further explored correlations between fine root length, root surface area, volume, biomass, and aboveground biomass, culminating in a mixed-effects model. The mixed-effects model quantified the relationships between underground roots and aboveground growth in varying soil nutrient environments. The results indicated optimal root growth in Populus tomentosa and Pinus tabuliformis, characterized by maximum root length, surface area, and volume, under conditions of 200 g·m−2 soil nutrient concentration and 50 cm planting distance; Populus tomentosa fine roots had a vertical center at a depth of 8.5 cm, whereas Pinus tabuliformis roots were centered at depths of 5–7.5 cm, indicating differing competitive strategies. Pinus tabuliformis exhibited competitive superiority in the soil’s surface layer, in contrast to Populus tomentosa, which thrived in deeper layers. The study of the allometric growth model revealed that under conditions where the nutrient gradient was 200 g·m−2 and the planting distance was 25 cm, Populus tomentosa demonstrated its highest allometric growth index (2.801), indicative of positive allometric growth. Furthermore, there was a notable inclination of resource allocation towards the aboveground, which enhances the accumulation of aboveground biomass. The mixed-effects model equation showed a clear linear relationship between underground roots and aboveground biomass. The final fitting coefficient of the model was high, providing a robust theoretical basis for future management practices. The mixed-effects model revealed the following hierarchy of fixed-effect coefficients for root system characteristics affecting aboveground biomass: fine root volume (132.11) > fine root biomass (6.462) > root surface area (−4.053) > fine root length (0.201). In subsequent plantation reconstruction and forest management, increasing soil fertility and planting distance can promote the growth of underground roots and biomass accumulation. Appropriately increasing soil fertility and reducing planting distance can effectively promote aboveground biomass accumulation, achieving sustainable forest development.

Funder

National Key Research and Development Plan Project of China

National Natural Science Foundation of China

Shanxi Province Water Conservancy Science and Technology Research and Promotion Project

Scientific and Technological Innovation Project of Colleges and Universities in Shanxi Province

Shanxi Provincial Outstanding Doctoral Program for Incentive Funds for Scientific Research Projects

Publisher

MDPI AG

Reference61 articles.

1. Retention Forestry to Maintain Multifunctional Forests: A World Perspective;Gustafsson;BioScience,2012

2. The economic contribution of the world’s forest sector;Li;For. Policy Econ.,2019

3. Theoretical Basis and Implementation Techniques on Close-to-nature Transformation of Plantations;Lu;World For. Res.,2009

4. Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services;Shirong;Acta Ecol. Sin.,2018

5. Effect of close-to-nature management on species diversity in a Cunninghamia lanceolata plantation;Sun;For. Res.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3