Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023)

Author:

Wu Di1ORCID,Quan Donghe1ORCID,Jin Ri12ORCID

Affiliation:

1. College of Geography and Ocean Sciences, Yanbian University, Hunchun 133300, China

2. Northeast Asian Research Center of Transboundary Disaster Risk and Ecological Security, Yanbian University, Hunchun 133300, China

Abstract

Understanding the dynamics of water bodies is crucial for managing water resources and protecting ecosystems, especially in regions prone to climatic extremes. The Tumen River Basin, a transboundary area in Northeast Asia, has seen significant water body changes influenced by natural and anthropogenic factors. Using Landsat 8 and Sentinel-1 data on Google Earth Engine, we systematically analyzed the spatiotemporal variations and drivers of water body changes in this basin from 2015 to 2023. The water body extraction process demonstrated high accuracy, with overall precision rates of 95.75% for Landsat 8 and 98.25% for Sentinel-1. Despite observed annual fluctuations, the overall water area exhibited an increasing trend, notably peaking in 2016 due to an extraordinary flood event. Emerging Hot Spot Analysis revealed upstream areas as declining cold spots and downstream regions as increasing hot spots, with artificial water bodies showing a growth trend. Utilizing Random Forest Regression, key factors such as precipitation, potential evaporation, population density, bare land, and wetlands were identified, accounting for approximately 81.9–85.3% of the observed variations in the water body area. During the anomalous flood period from June to September 2016, the Geographically Weighted Regression (GWR) model underscored the predominant influence of precipitation, potential evaporation, and population density at the sub-basin scale. These findings provide critical insights for strategic water resource management and environmental conservation in the Tumen River Basin.

Funder

Study on the simulation of wetland degradation and environmental effects in Tumen River Basin

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3