Genetic Diversity and Population Dynamics of Invasive Ascidiella aspersa: Insights from Cytochrome Oxidase Subunit I and 18S rDNA Analyses in Korean and Global Populations

Author:

Lee Jeounghee1ORCID,Kwon Soyeon2ORCID,Ubagan Michael Dadole12ORCID,Lee Taekjun12ORCID,Shin Sook12ORCID

Affiliation:

1. Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea

2. Department of Animal Biotechnology & Resource, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea

Abstract

Ascidiella aspersa, originally native to the northeastern Atlantic, has emerged as a prolific invasive species in coastal waters worldwide. In 2010, it was identified as an alien species in Republic of Korea, rapidly colonizing artificial harbor structures and outcompeting native species. This study employs morphological analyses and genetic sequencing, focusing on mitochondrial DNA (cytochrome oxidase subunit I; mt-COI) and nuclear markers (18S rRNA), to unravel the genetic structure and haplotype diversity (Hd) of A. aspersa populations in Republic of Korea and globally. The analysis of 154 mt-COI and 127 18S rDNA global population sequences, as well as 80 mt-COI and 79 18S-rDNA Korean population sequences, revealed distinct genetic patterns. Among global populations, the mt-COI gene displayed significant genetic diversity, with 21 distinct haplotypes distributed across 41 polymorphic sites, which is indicative of extensive genetic variability. In contrast, the 18S rDNA marker exhibited limited diversity, with only four haplotypes identified at three polymorphic sites. In Korean populations, the mt-COI gene also exhibited substantial genetic diversity, with 14 distinct haplotypes displaying genetic variations at 29 polymorphic sites. Conversely, the 18S rDNA marker in Korean populations revealed a unique genetic pattern, with only one shared haplotype. These findings emphasize the complex genetic diversity within A. aspersa populations, both globally and in Republic of Korea. This genetic analysis provides valuable insights into the species’ colonization history and adaptation mechanisms, shedding light on the factors shaping its genetic structure. Further research is warranted to elucidate the ecological implications of these genetic patterns in the context of invasion biology.

Funder

Improvement of Management Strategies on Marine Ecosystems Disturbing and Harmful Organisms

Monitoring Survey on the Distribution of Disturbing and Harmful Benthos in the Marine Ecosystem

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3