Development of a Low-Cost Automated Hydrological Information System for Remote Areas in Morelia, Mexico

Author:

Sánchez-Quispe Sonia Tatiana1,Madrigal Jaime1ORCID,Rodríguez-Licea Daniel1,Domínguez-Mota Francisco Javier2ORCID,Domínguez-Sánchez Constantino1,Lara-Ledesma Benjamín1

Affiliation:

1. Faculty of Civil Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico

2. Faculty of Physical Mathematical Sciences, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico

Abstract

Measurement of meteorological variables is essential to assess and analyze extreme events, such as droughts and floods, and even more so when the purpose is to generate early warnings of such natural phenomena. Nowadays, several mechanisms can estimate climatic variables like precipitation and temperature. However, no device measures precipitation values in real-time and at a low-cost, much less are these installed in remote areas of difficult access. Therefore, an Automated Hydrological Information System was developed based on low-cost meteorological stations with two communication protocols, Wi-Fi and GSM. The devices are equipped with a self-sustainable power supply, including a solar panel and energy storage that can last for up to three cloudy days. The precipitation, temperature, and relative humidity values are sent to a database, where they are then processed and displayed on a web page, accessible for download. Users can easily access the data from an official application that redirects them to the website without the need for a computer or a mobile browser. Warning systems are feasible due to the use of IoT services such as ThingSpeak and Ubidots. Ultimately, they allow the analysis of information and immediately send alerts if it exceeds the tolerance ranges.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3