Affiliation:
1. Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
Abstract
The needless use of tetracyclines (TCs) in foodstuffs is a huge health concern in low- and middle-income and Arab countries. Herein, a sensitive and faster monitoring system for H2O2 and TCs is proposed, utilizing the large surface-to-volume ratio of a non-spherical gold nanoparticle/black phosphorus nanocomposite (BP-nsAu NPs) for the first time. BP-nsAu NPs were synthesized through a single-step method that presented nanozymatic activity through 3,3′,5,5′-Tetramethylbenzidine (TMB) oxidation while H2O2 was present and obeyed the Michaelis–Menten equation. The nanozymatic activity of the BP-nsAu NPs was enhanced 12-fold and their detection time was decreased 83-fold compared to conventional nanozymatic reactions. The proposed method enabled us to quantify H2O2 with a limit of detection (LOD) value of 60 nM. Moreover, target-specific aptamer-conjugated BP-nsAu NPs helped us detect TCs with an LOD value of 90 nM. The present strategy provides a proficient route for low-level TC monitoring in real samples.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献