Impedimetric Detection of Cancer Markers Based on Nanofiber Copolymers

Author:

Elnagar Noha12ORCID,Elgiddawy Nada3,El Rouby Waleed M. A.1ORCID,Farghali Ahmed A.1,Korri-Youssoufi Hafsa2ORCID

Affiliation:

1. Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt

2. Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), ECBB, 17 Avenue des Sciences, Site Henri Moisson, 91400 Orsay, France

3. Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt

Abstract

The sensitive determination of folate receptors (FRs) in the early stages of cancer is of great significance for controlling the progression of cancerous cells. Many folic acid (FA)-based electrochemical biosensors have been utilized to detect FRs with promising performances, but most were complicated, non-reproducible, non-biocompatible, and time and cost consuming. Here, we developed an environmentally friendly and sensitive biosensor for FR detection. We proposed an electrochemical impedimetric biosensor formed by nanofibers (NFs) of bio-copolymers prepared by electrospinning. The biosensor combines the advantages of bio-friendly polymers, such as sodium alginate (SA) and polyethylene oxide (PEO) as an antifouling polymer, with FA as a biorecognition element. The NF nanocomposites were characterized using various techniques, including SEM, FTIR, zeta potential (ZP), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). We evaluated the performance of the NF biosensor using EIS and demonstrated FR detection in plasma with a limit of detection of 3 pM. Furthermore, the biosensor showed high selectivity, reliability, and good stability when stored for two months. This biosensor was constructed from ‘green credentials’ holding polymers that are highly needed in the new paradigm shift in the medical industry.

Funder

French Embassy in Egypt

French Institute in Egypt

Agence Universitaire de la Francophonie

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3