A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring

Author:

Guo Yang123,Sun Jingran1,Liu Mingzhu1,Wu Jin1ORCID,Zhao Zunquan1,Ma Ting1,Fang Yanjun1

Affiliation:

1. The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China

2. Ningxia Hui Autonomous Region Food Testing Research Institute, Yinchuan 750000, China

3. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

Nanomaterials are desirable for sensing applications. Therefore, MnO2 nanosheets and nitrogen-doped carbon dots (NCDs) were used to construct a ratiometric biosensor for quantification of 2,4-dichlorophenoxyacetic acid. The MnO2 nanosheets drove the oxidation of colorless o-phenylenediamine to OPDox, which exhibits fluorescence emission peaks at 556 nm. The fluorescence of OPDox was efficiently quenched and the NCDs were recovered as the ascorbic acid produced by the hydrolyzed alkaline phosphatase (ALP) substrate increased. Owing to the selective inhibition of ALP activity by 2,4-D and the inner filter effect, the fluorescence intensity of the NCDs at 430 nm was suppressed, whereas that at 556 nm was maintained. The fluorescence intensity ratio was used for quantitative detection. The linear equation was F = 0.138 + 3.863·C 2,4-D (correlation coefficient R2 = 0.9904), whereas the limits of detection (LOD) and quantification (LOQ) were 0.013 and 0.040 μg/mL. The method was successfully employed for the determination of 2,4-D in different vegetables with recoveries of 79%~105%. The fluorescent color change in the 2,4-D sensing system can also be captured by a smartphone to achieve colorimetric detection by homemade portable test kit.

Funder

National Key Research and Development Program of China

the special fund from key topics

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3