Abstract
In this paper, we propose a distributed secure delegated quantum computation protocol, by which an almost classical client can delegate a (dk)-qubit quantum circuit to d quantum servers, where each server is equipped with a 2k-qubit register that is used to process only k qubits of the delegated quantum circuit. None of servers can learn any information about the input and output of the computation. The only requirement for the client is that he or she has ability to prepare four possible qubits in the state of (|0⟩+eiθ|1⟩)/2, where θ∈{0,π/2,π,3π/2}. The only requirement for servers is that each pair of them share some entangled states (|0⟩|+⟩+|1⟩|−⟩)/2 as ancillary qubits. Instead of assuming that all servers are interconnected directly by quantum channels, we introduce a third party in our protocol that is designed to distribute the entangled states between those servers. This would simplify the quantum network because the servers do not need to share a quantum channel. In the end, we show that our protocol can guarantee unconditional security of the computation under the situation where all servers, including the third party, are honest-but-curious and allowed to cooperate with each other.
Funder
National Natural Science Foundation of China
Natural Science Baisc Research Program of Shaanxi, China
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Verifiable distributed blind quantum computation;SCIENTIA SINICA Physica, Mechanica & Astronomica;2024-08-08
2. Quantum neural network with privacy protection of input data and training parameters;Physica Scripta;2024-02-12
3. Multiparty Secure Delegated Quantum Computation;2023 International Conference on Networks, Communications and Intelligent Computing (NCIC);2023-11-17
4. Quantum Information and Computation;Entropy;2023-03-07