A Hybrid Deep Learning Model for Brain Tumour Classification

Author:

Rasool Mohammed,Ismail Nor Azman,Boulila WadiiORCID,Ammar AdelORCID,Samma HusseinORCID,Yafooz Wael M. S.ORCID,Emara Abdel-Hamid M.ORCID

Abstract

A brain tumour is one of the major reasons for death in humans, and it is the tenth most common type of tumour that affects people of all ages. However, if detected early, it is one of the most treatable types of tumours. Brain tumours are classified using biopsy, which is not usually performed before definitive brain surgery. An image classification technique for tumour diseases is important for accelerating the treatment process and avoiding surgery and errors from manual diagnosis by radiologists. The advancement of technology and machine learning (ML) can assist radiologists in tumour diagnostics using magnetic resonance imaging (MRI) images without invasive procedures. This work introduced a new hybrid CNN-based architecture to classify three brain tumour types through MRI images. The method suggested in this paper uses hybrid deep learning classification based on CNN with two methods. The first method combines a pre-trained Google-Net model of the CNN algorithm for feature extraction with SVM for pattern classification. The second method integrates a finely tuned Google-Net with a soft-max classifier. The proposed approach was evaluated using MRI brain images that contain a total of 1426 glioma images, 708 meningioma images, 930 pituitary tumour images, and 396 normal brain images. The reported results showed that an accuracy of 93.1% was achieved from the finely tuned Google-Net model. However, the synergy of Google-Net as a feature extractor with an SVM classifier improved recognition accuracy to 98.1%.

Funder

Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference59 articles.

1. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012

2. Segmentation of brain MRI image based on the clustering algorithm;Sulaiman;Proceedings of the 2014 IEEE Symposium on Industrial Electronics & Applications (ISIEA),2014

3. The Human Nervous System: Structure and Function;Noback,2005

4. Abstracts of the Fourth Brainstorming Research Assembly for Young Neuroscientists (BraYn), Italy, 20–22 October 2021

5. Identification of Brain Tumor Using Image Processing Techniques;Gamage,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3