Abstract
The presence of “hypoxic” tissue (with O2 levels of <0.1 mmHg) in solid tumours, resulting in quiescent tumour cells distant from blood vessels, but capable of being reactivated by reoxygenation following conventional therapy (radiation or drugs), have long been known as a limitation to successful cancer chemotherapy. This has resulted in a sustained effort to develop nitroaromatic “hypoxia-activated prodrugs” designed to undergo enzyme-based nitro group reduction selectively in these hypoxic regions, to generate active drugs. Such nitro-based prodrugs can be classified into two major groups; those activated either by electron redistribution or by fragmentation following nitro group reduction, relying on the extraordinary difference in electron demand between an aromatic nitro group and its reduction products. The vast majority of hypoxia-activated fall into the latter category and are discussed here classed by the nature of their nitroaromatic trigger units.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献