The Economy of Canopy Space Occupation and Shade Production in Early- to Late-Successional Temperate Tree Species and Their Relation to Productivity

Author:

Leuschner Christoph,Hagemeier Marc

Abstract

Light capture is linked to occupation of canopy space by tree crowns, which requires investment of carbon and nutrients. We hypothesize that (i) late-successional trees invest more in casting shade than in occupying space than early-successional trees, and (ii) shade production and crown volume expansion are generally greater in more productive species. For six Central European early-successional (Betula pendula, Pinus sylvestris), mid/late-successional (Quercus petraea, Carpinus betulus), and late-successional tree species (Tilia cordata, Fagus sylvatica), we measured through full-tree harvests (1) crown volume, (2) the costs of canopy space exploration (carbon (C) and nutrients invested to fill crown volume), of space occupation (annual foliage production per volume), and of shade production (foliage needed to reduce light transmittance), and (3) related the costs to aboveground productivity (ANPP). The C and nutrient costs of canopy volume exploration and occupation were independent of the species’ seral stage, but increased with ANPP. In contrast, the cost of shade production decreased from early-to late-successional species, suggesting that the economy of shade production is more decisive for the competitive superiority of late-successional species than the economy of canopy space exploration and occupation.

Publisher

MDPI AG

Subject

Forestry

Reference46 articles.

1. The architecture of plant crowns: From design rules to light capture and performance;Valladares,2007

2. Forest canopies;Landsberg,1995

3. Plants in Changing Environments;Bazzaz,1996

4. Architecture, ecology, and evolution of plant crowns;Valladares,1999

5. Space as a resource;Grams;Prog. Bot.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3