Author:
Leuschner Christoph,Hagemeier Marc
Abstract
Light capture is linked to occupation of canopy space by tree crowns, which requires investment of carbon and nutrients. We hypothesize that (i) late-successional trees invest more in casting shade than in occupying space than early-successional trees, and (ii) shade production and crown volume expansion are generally greater in more productive species. For six Central European early-successional (Betula pendula, Pinus sylvestris), mid/late-successional (Quercus petraea, Carpinus betulus), and late-successional tree species (Tilia cordata, Fagus sylvatica), we measured through full-tree harvests (1) crown volume, (2) the costs of canopy space exploration (carbon (C) and nutrients invested to fill crown volume), of space occupation (annual foliage production per volume), and of shade production (foliage needed to reduce light transmittance), and (3) related the costs to aboveground productivity (ANPP). The C and nutrient costs of canopy volume exploration and occupation were independent of the species’ seral stage, but increased with ANPP. In contrast, the cost of shade production decreased from early-to late-successional species, suggesting that the economy of shade production is more decisive for the competitive superiority of late-successional species than the economy of canopy space exploration and occupation.
Reference46 articles.
1. The architecture of plant crowns: From design rules to light capture and performance;Valladares,2007
2. Forest canopies;Landsberg,1995
3. Plants in Changing Environments;Bazzaz,1996
4. Architecture, ecology, and evolution of plant crowns;Valladares,1999
5. Space as a resource;Grams;Prog. Bot.,2011
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献