Update of Genetic Linkage Map and QTL Analysis for Growth Traits in Eucommia ulmoides Oliver

Author:

Jin Cangfu,Li ZhouqiORCID,Li Yu,Wang Shuhui,Li Long,Liu Minhao

Abstract

Eucommia ulmoides (Tu-chung) is an economically and ecologically important tree species which has attracted worldwide attention due to its application in pharmacology, landscaping, wind sheltering and sand fixation. Molecular marker technologies can elucidate the genetic mechanism and substantially improve the breeding efficiency of E. ulmoides. The current research updated the original linkage map, and quantitative trait loci (QTL) analysis was performed on tree growth traits measured over 10 consecutive years in an E. ulmoides F1 population (“Xiaoye” × “Qinzhong No.1”). In total, 452 polymorphic markers were scored from 365 simple sequence repeat (SSR) primers, with an average of 1.24 polymorphic markers per primer combination. The integrated map was 1913.29 cM (centimorgan) long, covering 94.10% of the estimated genome and with an average marker density of 2.20 cM. A total of 869 markers were mapped into 19 major independent linkage groups. Growth-related traits measured over 10 consecutive years showed a significant correlation, and 89 hypothetical QTLs were forecasted and divided into 27 distinct loci. Three traits for tree height, ground diameter and crown diameter detected 25 QTLs (13 loci), 32 QTLs (17 loci) and 15 QTLs (10 loci), respectively. Based on BLASTX search results in the NCBI database, six candidate genes were obtained. It is important to explore the growth-related genetic mechanism and lay the foundation for the genetic improvement of E. ulmoides at the molecular level.

Publisher

MDPI AG

Subject

Forestry

Reference66 articles.

1. A Contribution to Our Knowledge of Tu-chung — Eucommia Ulmoides

2. Prospects and research progress of Gutta-percha;Du;J. Central South For. Univ.,2003

3. Production of Eucommia-rubber from Eucommia ulmoides Oliv. (Hardy Rubber Tree)

4. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver)

5. Antihypertensive mechanism of food for specified health use: “Eucommia leaf glycoside” and its clinical application;Kawasaki;J. Health Sci.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3