Abstract
Paddy fields emit considerable amounts of methane (CH4), which is a potent greenhouse gas (GHG) and, thereby, causes significant environmental impacts, even as they generate wealth and jobs directly in the agricultural sector, and indirectly in the food-processing sector. Application of biochar in rice production systems will not just help to truncate their carbon footprints, but also add to the bottom-line. In this work, the authors have reviewed the literature on climate change, human health, and economic impacts of using organic residues to make biochar for the addition to croplands especially to rice paddy fields. Biochar-bioenergy systems range in scale from small household cook-stoves to large industrial pyrolysis plants. Biochar can be purveyed in different forms—raw, mineral-enriched, or blended with compost. The review of published environmental life cycle assessment (E-LCA) studies showed biochar has the potential to mitigate the carbon footprint of farming systems through a range of mechanisms. The most important factors are the stabilization of the carbon in the biochar and the generation of recoverable energy from pyrolysis gases produced as co-products with biochar as well as decreased fertiliser requirement and enhanced crop productivity. The quantitative review of E-LCA studies concluded that the carbon footprint of rice produced in biochar-treated soil was estimated to range from −1.43 to 2.79 kg CO2-eq per kg rice grain, implying a significant reduction relative to rice produced without a biochar soil amendment. The suppression of soil-methane emission due to the biochar addition is the dominant process with a negative contribution of 40–70% in the climate change mitigation of rice production. The review of the life cycle cost studies on biochar use as an additive in farmlands demonstrated that biochar application can be an economically-feasible approach in some conditions. Strategies like the subsidization of the initial biochar capital cost and assignment of a non-trivial price for carbon abatement in future pricing mechanisms will enhance the economic benefits for the rice farmers.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献