Implementation and Evaluation of a Federated Learning Framework on Raspberry PI Platforms for IoT 6G Applications

Author:

Ridolfi Lorenzo1ORCID,Naseh David1ORCID,Shinde Swapnil Sadashiv1ORCID,Tarchi Daniele1ORCID

Affiliation:

1. Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, 40126 Bologna, Italy

Abstract

With the advent of 6G technology, the proliferation of interconnected devices necessitates a robust, fully connected intelligence network. Federated Learning (FL) stands as a key distributed learning technique, showing promise in recent advancements. However, the integration of novel Internet of Things (IoT) applications and virtualization technologies has introduced diverse and heterogeneous devices into wireless networks. This diversity encompasses variations in computation, communication, storage resources, training data, and communication modes among connected nodes. In this context, our study presents a pivotal contribution by analyzing and implementing FL processes tailored for 6G standards. Our work defines a practical FL platform, employing Raspberry Pi devices and virtual machines as client nodes, with a Windows PC serving as a parameter server. We tackle the image classification challenge, implementing the FL model via PyTorch, augmented by the specialized FL library, Flower. Notably, our analysis delves into the impact of computational resources, data availability, and heating issues across heterogeneous device sets. Additionally, we address knowledge transfer and employ pre-trained networks in our FL performance evaluation. This research underscores the indispensable role of artificial intelligence in IoT scenarios within the 6G landscape, providing a comprehensive framework for FL implementation across diverse and heterogeneous devices.

Funder

European Commission

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3