An Identity Privacy-Preserving Scheme against Insider Logistics Data Leakage Based on One-Time-Use Accounts

Author:

Sun Nigang1,Zhu Chenyang2,Zhang Yuanyi3ORCID,Liu Yining4ORCID

Affiliation:

1. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213000, China

2. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213000, China

3. Shanghai Shentie Information Engineering Co., Ltd. No.12, Huangchengdong Road, Shangcheng District, Hangzhou 310009, China

4. School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Digital transformation of the logistics industry triggered by the widespread use of Internet of Things (IoT) technology has prompted a significant revolution in logistics companies, further bringing huge dividends to society. However, the concurrent accelerated growth of logistics companies also significantly hinders the safeguarding of individual privacy. Digital identity has ascended to having the status of a prevalent privacy-protection solution, principally due to its efficacy in mitigating privacy compromises. However, the extant schemes fall short of addressing the issue of privacy breaches engendered by insider maleficence. This paper proposes an innovative identity privacy-preserving scheme aimed at addressing the quandary of internal data breaches. In this scheme, the identity provider furnishes one-time-use accounts for logistics users, thereby obviating the protracted retention of logistics data within the internal database. The scheme also employs ciphertext policy attribute-based encryption (CP-ABE) to encrypt address nodes, wherein the access privileges accorded to logistics companies are circumscribed. Therefore, internal logistics staff have to secure unequivocal authorization from users prior to accessing identity-specific data and privacy protection of user information is also concomitantly strengthened. Crucially, this scheme ameliorates internal privacy concerns, rendering it infeasible for internal interlopers to correlate the users’ authentic identities with their digital wallets. Finally, the effectiveness and reliability of the scheme are demonstrated through simulation experiments and discussions of security.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. APPS: Authentication-enabled privacy protection scheme for secure data transfer in Internet of Things;Ad Hoc Networks;2024-11

2. Securing the Supply Chain;Advances in Information Security, Privacy, and Ethics;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3