Influence of Interactions between Nitrogen, Phosphorus Supply and Epichloёbromicola on Growth of Wild Barley (Hordeum brevisubulatum)

Author:

Lang Mingxiao,Zhou Jingle,Chen Taixiang,Chen Zhenjiang,Malik KamranORCID,Li ChunjieORCID

Abstract

Epichloë endophytes are biotrophic fungi that establish mutualistic symbiotic relationship with grasses and affect performance of the host under different environments. Wild barley (Hordeum brevisubulatum) is an important forage grass and often infected by Epichloë bromicola, thus showing tolerances to stresses. Since the plant growth correlates with both microbial infection and nutrient stoichiometry, this study was performed to investigate whether the function of Epichloë bromicola endophyte to improve host growth depend upon the nitrogen (N), phosphorus (P) fertilization. Epichloë-infected (E+) and Epichloë-free (E−) wild barley plants were subjected to nine types of mixed N (0.2 mM, 3 mM, 15 mM) and P (0.01 mM, 0.1 mM, 1.5 mM) levels treatments for 90 d to collect plant samples and determine multiple related indexes. We found that E. bromicola and N, P additions positively affected seed germination. Further, E. bromicola significantly enhanced chlorophyll content and root metabolic activity under N-deficiency, and meanwhile, might alter allocation of photosynthate under different conditions. The contents of N, P and stoichiometry of C:N:P of E+ plants were significantly higher than that of E− under nutrient deficiency, but contrary results were observed under adequate nutrients. Therefore, we propose that the growth-promoting ability of E. bromicola is closely correlated with N and P additional levels. Under low N, P additions, positive roles of endophyte are significant as opposed to negative roles under high N, P additions.

Funder

National Basic Research Program of China

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3