Paecilomyces formosus MD12, a Biocontrol Agent to Treat Meloidogyne incognita on Brinjal in Green House

Author:

Baazeem AlaaORCID,Alorabi Mohammed,Manikandan Palanisamy,Alotaibi Saqer S.ORCID,Almanea Abdulaziz,Abdel-Hadi AhmedORCID,Vijayaraghavan Ponnuswamy,Raj Subhanandharaj Russalamma Flanet,Kim Young Ock,Kim Hak-JaeORCID

Abstract

The present study was carried out to analyze the potential of fungi isolated from the rhizosphere of soybean, brinjal, tomato, and potato plants. The density of fungi varied in the pot soil and rhizosphere after Paecilomyces formosus MD12 treatment. The P. formosus MD12 population was 6.3 ± 0.13 × 104 CFU g−1 in the pot planted with brinjal, and the population increased in the rhizosphere (6.72 ± 0.41 × 104 CFU g−1). P. formosus MD12 was cultured in the production medium, and the supernatant was used for egg inhibition studies on a root-knot nematode parasite, Meloidogyne incognita. It was revealed that maximum egg inhibition (94.7 ± 6.2%) was obtained at 100% concentration of extract. The culture supernatant from P. formosus MD12 affected the development of M. incognita juvenile, and the mortality rate was maximum after 96 h (95 ± 6%). Mortality was reduced when treated with 25%, 50%, and 75% supernatant. At 1 × 107 mL−1 of spore suspension, we found reductions of 71.6 ± 3.3% nematode populations in the soil, 60.7 ± 2.2% from the root, and 63.6 ± 2.4% egg mass compared with the control in the pot experiment. The culture supernatant applied at the 10% level showed a maximum mean reduction of the nematode population in roots (72.4 ± 2.2%), soil (77.9 ± 2.5%), and egg masses (73.2 ± 1.5%), respectively. The presence of P. formosus MD12 in a soil environment could antagonize nematode parasites and improve soil amendment. The P. formosus MD12 strain showed good biocontrol ability against the root-knot nematode, M. incognita, under in vitro and green house experimental condition.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3