Enset Fiber-Reinforced Polylactic Acid-Based Biocomposites for High-Performance Application

Author:

Abraha Kahsay Gebresilassie12ORCID,Debeli Dereje Kebebew3ORCID,Ghani Muhammad Usman1ORCID,Tesfahunegn Awet Arefe4,Guo Jiansheng1

Affiliation:

1. Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China

2. Department of Textile Engineering, Aksum University, Aksum P.O. Box 1010, Tigrai, Ethiopia

3. Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

4. College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China

Abstract

In recent years, there has been growing interest in using plant fibers to reinforce materials in modern manufacturing. This study focuses on the development of a novel biocomposite made from an enset fiber (EF) and polylactic acid (PLA) matrix using compression molding at a hot-pressing temperature of 170 °C and pressure of 7 MPa for 7 min. Before preparing the biocomposites, the fibers were chemically modified with different concentrations of sodium hydroxide (NaOH) and cut into shorter fibers with a 40 mm average length in size. Then, the extent of modifications on the mechanical properties, dynamic mechanical behavior, morphology, and water absorption were investigated. The tensile, flexural, and Charpy impact tests were carried out to evaluate the mechanical properties of the samples as per ASTM standards. Moreover, dynamic mechanical analysis (DMA) and the water absorbency of the biocomposites were investigated, and the results were graphically shown and explained. The results indicate that the biocomposite treated with 5% NaOH exhibited significant improvements in tensile strength, flexural strength, and impact strength compared to the untreated composite. The tensile modulus and flexural modulus of 5% NaOH-modified enset fiber biocomposite were also enhanced by 55.8% and 70.3% compared to untreated enset fiber biocomposite. The highest tensile strength, flexural strength, and impact strength found for the PLA composite reinforced by EF treated with 5% w/v NaOH solution were 20.16 MPa, 30.21 MPa, and 12.02 kJ/m2, respectively. In general, the modification of natural fibers improves adhesion at the interface and therefore decreases the water absorption and improves the dynamic mechanical properties of biocomposites.

Funder

Donghua University

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3