Hybrid Sol–Gel and Spark Plasma Sintering to Produce Perovskite-like SrTiO3 Ceramics for Radioactive Waste Isolation

Author:

Belov Anton A.1ORCID,Shichalin Oleg O.1ORCID,Papynov Evgeniy K.1ORCID,Buravlev Igor Yu.1ORCID,Kolodeznikov Erhan S.1,Kapustina Olesya V.1,Azon Semen A.1,Kondrikov Nikolay B.1,Fedorets Alexander N.1,Tananaev Ivan G.12

Affiliation:

1. Nuclear Technology Laboratory, Department of Nuclear Technology, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia

2. Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences, Akademgorodok, 26a, 184209 Apatity, Russia

Abstract

The paper presents a reliable technology combining sol–gel synthesis and spark plasma sintering (SPS) to obtain SrTiO3 perovskite-type ceramics with excellent physicomechanical properties and hydrolytic stability for the long-term retention of radioactive strontium radionuclides. The Pechini sol–gel method was used to synthesize SrTiO3 powder from Sr(NO3)2 and TiCl3 (15%) precursors. Ceramic matrix samples were fabricated by SPS in the temperature range of 900–1200 °C. The perovskite structure of the synthesized initial SrTiO3 powder was confirmed by X-ray diffraction and thermal analysis results. Scanning electron microscopy revealed agglomeration of the nanoparticles and a pronounced tendency for densification in the sintered compact with increasing sintering temperature. Chemical homogeneity of ceramics was confirmed by energy dispersive X-ray analysis. Physicochemical characteristic studies included density measurement results (3.11–4.80 g·cm−3), dilatometric dependencies, Vickers microhardness (20–900 HV), and hydrolytic stability (10−6–10−7 g·cm−2·day−2), exceeding GOST R 50926-96 and ISO 6961:1982 requirements for solid-state matrices. Ceramic sintered at 1200 °C demonstrated the lowest strontium leaching rate of 10−7 g/cm2·day, optimal for radioactive waste (RAW) isolation. The proposed approach can be used to fabricate mineral-like forms suitable for RAW handling.

Funder

State Assignment of the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3