Al2O3-Phosphate Bioceramic Fabrication via Spark Plasma Sintering-Reactive Synthesis: In Vivo and Microbiological Investigation

Author:

Papynov Evgeniy1ORCID,Shichalin Oleg1ORCID,Apanasevich Vladimir2,Plekhova Nataliya2ORCID,Belov Anton1ORCID,Buravlev Igor1ORCID,Portnyagin Arseny1,Mayorov Vitaliy1,Skurikhina Yuliya2ORCID,Fedorets Alexander1,Buravleva Anastasiya1ORCID,Gridasova Ekaterina1,Shi Yun34ORCID

Affiliation:

1. Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia

2. Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia

3. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China

4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This research introduces a method to enhance the biocompatibility of bioinert Al2O3-based ceramics by incorporating calcium phosphates (hydroxyapatite (HAp) and tricalcium phosphate (TCP)) into alumina via spark plasma sintering-reactive sintering (SPS-RS). TGA/DTG/DTA and XRD revealed phase formation of HAp and TCP and determined the main temperature points of solid-phase reactions occurring in situ during the sintering of the CaO-CaHPO4 mixture within the volume of Al2O3 under SPS-RS conditions in the range of 900–1200 °C. SEM, EDX, low temperature, and nitrogen physisorption were used to monitor changes in the morphology, structure, and elemental composition of bioceramics. Structural meso- and macroporosity, with a mean mesopore size of 10 nm, were revealed in the ceramic volume, while sintering temperature was shown to play a destructive role towards the porous inorganic framework. The physico-chemical characterization demonstrated increased relative density (up to 95.1%), compressive strength (640 MPa and above), and Vickers microhardness (up to 700 HV) depending on the HAp and TCP content and sintering temperature. Four bioceramic samples with different contents of HAP (20 and 50 wt.%) were bio-tested in in vivo models. The samples were implanted into the soft tissues under the superficial fascia of the thorax of a laboratory animal (a New Zealand White rabbit, female) in the area of the trapezius muscle and the broadest muscle of the back. Based on the results of the assessment of the surrounding tissue reaction, the absence of specific inflammation, necrosis, and tumor formation in the tissues during the implantation period of 90 days was proven. Microbial tests and dynamics of Pseudomonas aeruginosa bacterial film formation on bioceramic surfaces were studied with respect to HAp content (20 and 50 wt.%) and holding time (18, 24, and 48 h) in the feed medium.

Funder

Russian Science Foundation

Far Eastern Federal University

Papynov E.K. and the State Assignment of the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3