Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow

Author:

Sojka MariuszORCID,Kozłowski Michał,Stasik RafałORCID,Napierała MichałORCID,Kęsicka Barbara,Wróżyński RafałORCID,Jaskuła Joanna,Liberacki Daniel,Bykowski Jerzy

Abstract

The paper presents the results of the effects of control drainage (CD) on the groundwater table and subsurface outflow in Central Poland. The hydrologic model DRAINMOD was used to simulate soil water balance with drain spacing of 7 and 14 m, different initial groundwater Table 40, 60 and 80 cm b.s.l., and dates at the beginning of control drainage of 1 March, 15 March, 1 April, and 15 April. The CD restricts flow at the drain outlet to maintain a water table during the growing season. Simulations were made for the periods from March to September for the years 2014, 2017, and 2018, which were average, wet, and dry, respectively. The simulations showed a significant influence of the initial groundwater tables and date blocking the outflow from the drainage network on the obtained results. In the conditions of central Poland, the use of CD is rational only when it is started between 1 and 15 March. In this case, the groundwater table can be increased from 10 to 33 cm (7 m spacing) and from 10 to 41 cm (14 m spacing) in relation to the conventional system (free drainage—FD). In the case of blocking the outflow on 1 March, the reduction is about 80% on average in the period from March to September. With a delay in blocking the outflow, the impact of CDs decreases and ranges from 8% to 50%. Studies have shown that the proper use of the drainage network infrastructure complies with the idea of sustainable development, as it allows efficient water management, by reduction of the outflow and, thus, nitrates from agricultural areas. Furthermore, CD solutions can contribute to mitigating the effects of climate change on agriculture by reducing drought and flood risk.

Funder

Polish National Centre for Research and Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3