Scientific Decision Framework for Evaluation of Renewable Energy Sources under Q-Rung Orthopair Fuzzy Set with Partially Known Weight Information

Author:

Krishankumar R.,Ravichandran K. S.ORCID,Kar Samarjit,Cavallaro FaustoORCID,Zavadskas Edmundas KazimierasORCID,Mardani AbbasORCID

Abstract

As an attractive generalization of the intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy set (q-ROFS) provides the decision makers (DMs) with a wide window for preference elicitation. Previous studies on q-ROFS indicate that there is an urge for a decision framework which can make use of the available information in a proper manner for making rational decisions. Motivated by the superiority of q-ROFS, in this paper, a new decision framework is proposed, which provides scientific methods for multi-attribute group decision-making (MAGDM). Initially, a programming model is developed for calculating weights of attributes with the help of partially known information. Later, another programming model is developed for determining the weights of DMs with the help of partially known information. Preferences from different DMs are aggregated rationally by using the weights of DMs and extending generalized Maclaurin symmetric mean (GMSM) operator to q-ROFS, which can properly capture the interrelationship among attributes. Further, complex proportional assessment (COPRAS) method is extended to q-ROFS for prioritization of objects by using attributes’ weight vector and aggregated preference matrix. The applicability of the proposed framework is demonstrated by using a renewable energy source prioritization problem from an Indian perspective. Finally, the superiorities and weaknesses of the framework are discussed in comparison with state-of-the-art methods.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3