Chronic Heat Stress Induces Oxidative Stress and Induces Inflammatory Injury in Broiler Spleen via TLRs/MyD88/NF-κB Signaling Pathway in Broilers

Author:

Chen Haoxiang1,Wang Feiyao1,Wu Xingyue1,Yuan Songchen1,Dong Huili1,Zhou Chenyang1,Feng Siliang1,Zhao Zhanqin1ORCID,Si Lifang1

Affiliation:

1. College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China

Abstract

The spleen is the largest peripheral immune organ of the organism, accounting for 25% of the total lymphoid tissue of the body. During HS, the spleen is damaged due to the elevated environment, which seriously affects life performance and broilers’ health. This study aimed to investigate the mechanism of chronic HS damage to broiler spleen tissues. The broilers were typically raised until they reached 21 days of age, after which they were arbitrarily allocated into two groups: an HS group and a cntrol group. The HS group was subjected to a temperature of 35 °C for 10 h each day, starting at 21 days of age. At 35 and 42 days of age, spleen and serum samples were obtained from the broilers. The results showed that after HS, a significant decrease in productive performance was observed at 42 days of age (p < 0.01), and the spleen index, and bursa index were significantly decreased (p < 0.01). T-AOC of the organism was significantly decreased (p < 0.05), GSH-PX, SOD, and CAT antioxidant factors were significantly decreased (p < 0.01), and MDA was significantly elevated (p < 0.01). HS also led to a significant increase in cytokines IL-6, TNF-α, and INF-γ and a significant decrease in IL-4 in the spleen. The histopathologic results showed that the spleen’s red-white medulla was poorly demarcated. The cells were sparsely arranged after HS. After HS, the expression of TLRs, MYD88, and NF-κB genes increased significantly. The expression of HSP70 increased significantly, suggesting that HS may induces an inflammatory response in broiler spleens through this signaling pathway, which may cause pathological damage to broiler spleens, leading to a decrease in immune function and progressively aggravating HS-induced damage with the prolongation of HS.

Funder

National Natural Science Foundation of China

Horizontal Major Program for University-Enterprise Cooperation

Publisher

MDPI AG

Reference56 articles.

1. Zhao, Y., Liu, Y., Lv, Y., and Shao, Q. (2022). Hazardous mechanism of heat stress in poultry and its countermeasures. Contemp. Anim. Husb., 101–102.

2. Takenaka, M., Yabuta, A., Takahashi, Y., and Takakura, Y. (2021). Interleukin-4-carrying small extracellular vesicles with a high potential as anti-inflammatory therapeutics based on modulation of macrophage function. Biomaterials, 278.

3. Wang, X. (1989). Environmental stress and livestock health. J. Anim. Husb. Vet. Med., 43–48.

4. Biomolecular aspects of depression: A retrospective analysis;Peacock;Compr. Psychiatry,2017

5. Effects of L-arginine and α-ketoglutarate on liver function in heat-stressed broilers;Li;Feed Ind.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3