The Alleviating Effect of Taxifolin on Deoxynivalenol-Induced Damage in Porcine Intestinal Epithelial Cells

Author:

Zhu Min12ORCID,Fang Yongxia12,Cheng Yujie12,Xu E12,Zhang Yiyu12,Zhai Zhenya3

Affiliation:

1. Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China

2. Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China

3. Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China

Abstract

Deoxynivalenol (DON) contamination in feed is a global concern that severely threatens the health of animals and humans. Taxifolin (TA) is a natural flavonoid, a member of the polyphenols, that possesses robust antioxidant properties. This study aimed to investigate the effect of TA on DON-induced damage in porcine intestinal epithelial cells (IPEC-J2). The cells were pre-incubated with a series of concentrations of TA for 24 h and exposed to DON (0.5 μg/mL) for another 24 h. The results showed that pretreatment with TA (150 μM) significantly inhibited the DON-induced decline in cell viability (p < 0.05) and cell proliferation (p < 0.01). Additionally, 150 μM TA also alleviated DON-induced apoptosis (p < 0.01). Moreover, TA decreased the production of reactive oxygen species (ROS) induced by DON (p < 0.01). In addition, TA attenuated DON-induced cell junction damage (p < 0.05). Further experiments showed that TA reversed the DON-induced reduction in antioxidant capacity in the IPEC-J2 cells, probably via activating the Nrf2 signaling pathway (p < 0.05). Collectively, these findings suggest that 150 μM TA can protect against 0.5 μg/mL DON-induced damage to IPEC-J2 cells, potentially via the activation of the Nrf2 signaling pathway. This study provides insight into TA’s potential to act as a green feed additive in the pig farming industry and its efficacy in counteracting DON-induced intestinal damage.

Funder

National Natural Science Foundation of China

Guizhou Provincial Basic Research Program

Guizhou Provincial Key Technology R&D Program

Leading Academic and Technical Leaders in Major Disciplines in Jiangxi Province

Natural Science Special Research Fund of Guizhou University

the Foundation of Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3