Feasibility of Near-Infrared Spectroscopy in the Classification of Pig Lung Lesions

Author:

Varrà Maria Olga1ORCID,Conter Mauro2ORCID,Recchia Matteo3ORCID,Alborali Giovanni Loris3ORCID,Maisano Antonio Marco3ORCID,Ghidini Sergio4ORCID,Zanardi Emanuela1ORCID

Affiliation:

1. Department of Food and Drug, University of Parma, Strada del Taglio 10, 43126 Parma, Italy

2. Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy

3. Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna-Headquarters, Via A. Bianchi, 9, 25124 Brescia, Italy

4. Department of Veterinary Medicine and Animal Sciences, Via dell’Università 6, 26900 Lodi, Italy

Abstract

Respiratory diseases significantly affect intensive pig farming, causing production losses and increased antimicrobial use. Accurate classification of lung lesions is crucial for effective diagnostics and disease management. The integration of non-destructive and rapid techniques would be beneficial to enhance overall efficiency in addressing these challenges. This study investigates the potential of near-infrared (NIR) spectroscopy in classifying pig lung tissues. The NIR spectra (908–1676 nm) of 101 lungs from weaned pigs were analyzed using a portable instrument and subjected to multivariate analysis. Two distinct discriminant models were developed to differentiate normal (N), congested (C), and pathological (P) lung tissues, as well as catarrhal bronchopneumonia (CBP), fibrinous pleuropneumonia (FPP), and interstitial pneumonia (IP) patterns. Overall, the model tailored for discriminating among pathological lesions demonstrated superior classification performances. Major challenges arose in categorizing C lungs, which exhibited a misclassification rate of 30% with N and P tissues, and FPP samples, with 30% incorrectly recognized as CBP samples. Conversely, IP and CBP lungs were all identified with accuracy, precision, and sensitivity higher than 90%. In conclusion, this study provides a promising proof of concept for using NIR spectroscopy to recognize and categorize pig lungs with different pathological lesions, offering prospects for efficient diagnostic strategies.

Funder

University of Parma

Italian Ministry of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3