Molecular Detection and Phylogenetic Relationships of Honey Bee-Associated Viruses in Bee Products

Author:

Salkova Delka1ORCID,Balkanska Ralitsa2ORCID,Shumkova Rositsa3ORCID,Lazarova Stela4ORCID,Radoslavov Georgi4ORCID,Hristov Peter4ORCID

Affiliation:

1. Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2. Department “Special Branches”, Institute of Animal Science, Kostinbrod, Agricultural Academy, 1113 Sofia, Bulgaria

3. Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria

4. Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Abstract

In the last few years, the isolation and amplification of DNA or RNA from the environment (eDNA/eRNA) has proven to be an alternative and non-invasive approach for molecular identification of pathogens and pests in beekeeping. We have recently demonstrated that bee pollen and bee bread represent suitable biological material for the molecular identification of viral RNA. In the present study, we extracted total RNA from different bee products (pollen, n = 25; bee bread, n = 17; and royal jelly, n = 15). All the samples were tested for the presence of six of the most common honey bee-associated viruses—Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Chronic bee paralysis virus (CBPV), Sacbrood virus (SBV), Kashmir bee virus (KBV), and Black queen cell virus (BQCV)—using a reverse transcription polymerase chain reaction (RT-PCR). We successfully detected six records of DWV (10.5%, 6/57), four of ABPV (7.0%, 4/57), three of Israeli acute paralysis virus (IAPV) (5.3%, 3/57), and two of BQCV (3.5%, 2/57). Using ABPV primers, we also successfully detected the presence of IAPV. The obtained viral sequences were analyzed for phylogenetic relationships with the highly similar sequences (megablast) available in the GenBank database. The Bulgarian DWV isolates revealed a high homology level with strains from Syria and Turkey. Moreover, we successfully detected a DWV strain B for the first time in Bulgaria. In contrast to DWV, the ABPV isolates formed a separate clade in the phylogenetic tree. BQCV was closely grouped with Russian isolates, while Bulgarian IAPV formed its own clade and included a strain from China. In conclusion, the present study demonstrated that eRNA can be successfully used for molecular detection of honey bee-associated viruses in bee products. The method can assist the monitoring of the health status of honey bee colonies at the local, regional, and even national levels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3