Suppression of Inflammation-Associated Kidney Damage Post-Transplant Using the New PrC-210 Free Radical Scavenger in Rats

Author:

Goesch Torsten R.,Wilson Nancy A.,Zeng WeifengORCID,Verhoven Bret M.,Zhong Weixiong,Coumbe Gitter Maya M.,Fahl William E.

Abstract

Allograft kidney transplantation, which triggers host cellular- and antibody-mediated rejection of the kidney, is a major contributor to kidney damage during transplant. Here, we asked whether PrC-210 would suppress damage seen in allograft kidney transplant. Brown Norway (BN) rat kidneys were perfused in situ (UW Solution) with or without added 30 mM PrC-210, and then immediately transplanted into Lewis (LEW) rats. 20 h later, the transplanted BN kidneys and LEW rat plasma were analyzed. Kidney histology, and kidney/serum levels of several inflammation-associated cytokines, were measured to assess mismatch-related kidney pathology, and PrC-210 protective efficacy. Twenty hours after the allograft transplants: (i) significant histologic kidney tubule damage and mononuclear inflammatory cell infiltration were seen in allograft kidneys; (ii) kidney function metrics (creatinine and BUN) were significantly elevated; (iii) significant changes in key cytokines, i.e., TIMP-1, TNF-alpha and MIP-3A/CCL20, and kidney activated caspase levels were seen. In PrC-210-treated kidneys and recipient rats, (i) kidney histologic damage (Banff Scores) and mononuclear infiltration were reduced to untreated background levels; (ii) creatinine and BUN were significantly reduced; and (iii) activated caspase and cytokine changes were significantly reduced, some to background. In conclusion, the results suggest that PrC-210 could provide broadly applicable organ protection for many allograft transplantation conditions; it could protect transplanted kidneys during and after all stages of the transplantation process—from organ donation, through transportation, re-implantation and the post-operative inflammation—to minimize acute and chronic rejection.

Funder

National Institutes of Health

UW Inst Clin Translational Research

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3