Counterfactual Anonymous Quantum Teleportation in the Presence of Adversarial Attacks and Channel Noise

Author:

Nang Paing SawORCID,Setiawan Jason WilliamORCID,Tariq ShehbazORCID,Talha Rahim MuhammadORCID,Lee Kyesan,Shin HyundongORCID

Abstract

Hiding the identity of involved participants in the network, known as anonymity, is a crucial issue in some cryptographic applications such as electronic voting systems, auctions, digital signatures, and Byzantine agreements. This paper proposes a new anonymous quantum teleportation protocol based on counterfactual communication where no information-carrying particles pass through the channel. It is achieved by the distribution of a counterfactual entanglement among the participants in the network followed by the establishment of an anonymous entanglement between the sender and the receiver. Afterwards, the sender can anonymously teleport a quantum state to the receiver by utilizing the anonymous entanglement. However, the practicality of the anonymous quantum network mainly calls for two performance measures—robustness against adversarial attacks and noisy environments. Motivated by these demands, firstly, we prove the security of our proposed protocol and show that it achieves both the sender and receiver’s anonymity in the presence of active adversaries and untrusted parties. Along with anonymity, we also ensure the correctness of the protocol and the privacy of the teleported qubit. Finally, we analyze the robustness of our proposed protocol under the presence of channel noise and compare its fidelity with those of the conventional protocols. The main advantage of our proposed protocol is that it can provide useful anonymous quantum resources for teleportation under noisy environment with a higher security compared to previous protocols.

Funder

National Research Foundation of Korea

Information Technology Research Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3