A Height Nonlinear Velocity Field Algorithm for CORS Station Based on GARCH Model

Author:

Zhang Hengjing,Liu Huanling,Cui Dongdong,Zhang Fang

Abstract

In this study, the basic concept of height nonlinear velocity field modeling in the CORS station is described. The noise results in a large deviation between the observation and predicted height. An ARCH testing method for heteroscedasticity of CORS height residual square series was proposed and the non-stationary characteristic of CORS height residual square time series was proved. A CORS height nonlinear velocity field reconstruction method based on the GARCH model was proposed. First, a nonlinear LS periodic fitting model was established for CORS height series data. Then, a GARCH model was established for the fitted non-stationary residual series. Finally, the signal term, linear trend term, and GARCH model noise term of nonlinear LS modeling were combined to reconstruct the nonlinear velocity field of the CORS height. The RMSE of nonlinear LS cycle modeling for 25 CORS stations worldwide ranged from 5 to 10 mm. The differences between the velocity, approximate annual and semi-annual amplitudes, and SOPAC results were 0.73 mm/a, 0.94 mm, and 0.51 mm, respectively. Compared with the centimeter amplitude of the CORS station height, the accuracy of the nonlinear model established in this study met the requirements. The results of height nonlinear velocity field reconstruction at 25 CORS stations worldwide showed that the mean square error of prediction of the one-year height movement reached 9 mm, and the average prediction accuracy of the semi-annual was 7 mm. Compared with the calculation accuracy of the current global CORS elevation component of 3–5 mm, the prediction error in this study was about 3 mm. The expected goal was achieved regarding the accuracy of the CORS station height nonlinear velocity field model.

Funder

National High-End Foreign Expert Recruitment Program under Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Theory and Method for Establishment of the China Geodetic Coordinate System 2000;Cheng,2014

2. Preparatory analysis and development for the ITRF2020;Altamimi;Proceedings of the 23rd EGU General Assembly,2021

3. Anatomy of apparent seasonal variations from GPS-derived site position time series

4. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series

5. Error analysis of continuous GPS position time series

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3