STAT3 and NTRK2 Genes Predicted by the Bioinformatics Approach May Play Important Roles in the Pathogenesis of Multiple Sclerosis and Obsessive–Compulsive Disorder

Author:

Sepehrinezhad Ali,Shahbazi AliORCID,Bozorgmehr Ali,Kateb Babak,Yamamoto Vicky,Negah Sajad SahabORCID

Abstract

Background: There are no data available on the levels of genetic networks between obsessive–compulsive disorder (OCD) and multiple sclerosis (MS). To this point, we aimed to investigate common mechanisms and pathways using bioinformatics approaches to find novel genes that may be involved in the pathogenesis of OCD in MS. Methods: To obtain gene–gene interactions for MS and OCD, the STRING database was used. Cytoscape was then used to reconstruct and visualize graphs. Then, ToppGene and Enrichr were used to identify the main pathological processes and pathways involved in MS-OCD novel genes. Additionally, to predict transcription factors and microRNAs (miRNAs), the Enrichr database and miRDB database were used, respectively. Results: Our bioinformatics analysis showed that the signal transducer and the activator of transcription 3 (STAT3) and neurotrophic receptor tyrosine kinase 2 (NTRK2) genes had connections with 32 shared genes between MS and OCD. Furthermore, STAT3 and NTRK2 had the greatest enrichment parameters (i.e., molecular function, cellular components, and signaling pathways) among ten hub genes. Conclusions: To summarize, data from our bioinformatics analysis showed that there was a significant overlap in the genetic components of MS and OCD. The findings from this study make two contributions to future studies. First, predicted mechanisms related to STAT3 and NTRK2 in the context of MS and OCD can be investigated for pharmacological interventions. Second, predicted miRNAs related to STAT3 and NTRK2 can be tested as biomarkers in MS with OCD comorbidity. However, our study involved bioinformatics research; therefore, considerable experimental work (e.g., postmortem studies, case–control studies, and cohort studies) will need to be conducted to determine the etiology of OCD in MS from a mechanistic view.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3