Abstract
Antenatal factors play a role in NEC pathogenesis. This study aimed to investigate the predictive value of fetal ductus venosus doppler (DV) for NEC in fetal growth restriction fetuses (FGRF) and to assess the predictive accuracy of IG21 and Fenton curves in NEC development. Data from FGRF, postnatal findings, and Doppler characteristics were collected between 2010 and 2020 at a single center. Patients were then divided into two groups (i.e., with and without NEC). Bivariate and multivariate analyses were performed. We identified 24 cases and 30 controls. Absent or reversed end-diastolic flow (AREDF) and increased resistance in the DV were more impaired in cases (p < 0.05). Although the median birthweight was not different, the Fenton z-score was lower in NEC (p < 0.05). Fetal cardiopulmonary resuscitation, synchronized intermittent mandatory ventilation, neonatal respiratory distress, persistent patent ductus arteriosus (PDA), and inotropic support were more frequent in the NEC group. Furthermore, NEC patients had lower white blood cells (WBC) (p < 0.05). The predictive model for NEC (model 4), including Fenton z-score, WBC, PDA, and DV had an AUC of 84%. Fetal Doppler findings proved effective in predicting NEC in FGR. The Fenton z-score was the most predictive factor considering the fetal growth assessment showing high sensitivity.