Closed-Loop Controlled Fluid Administration Systems: A Comprehensive Scoping Review

Author:

Avital GuyORCID,Snider Eric J.ORCID,Berard DavidORCID,Vega Saul J.,Hernandez Torres Sofia I.,Convertino Victor A.ORCID,Salinas Jose,Boice Emily N.ORCID

Abstract

Physiological Closed-Loop Controlled systems continue to take a growing part in clinical practice, offering possibilities of providing more accurate, goal-directed care while reducing clinicians’ cognitive and task load. These systems also provide a standardized approach for the clinical management of the patient, leading to a reduction in care variability across multiple dimensions. For fluid management and administration, the advantages of closed-loop technology are clear, especially in conditions that require precise care to improve outcomes, such as peri-operative care, trauma, and acute burn care. Controller design varies from simplistic to complex designs, based on detailed physiological models and adaptive properties that account for inter-patient and intra-patient variability; their maturity level ranges from theoretical models tested in silico to commercially available, FDA-approved products. This comprehensive scoping review was conducted in order to assess the current technological landscape of this field, describe the systems currently available or under development, and suggest further advancements that may unfold in the coming years. Ten distinct systems were identified and discussed.

Funder

US Army Medical Research and Development Command

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference85 articles.

1. Introduction to Control Systems;Fernández de Cañete,2011

2. Feedback Systems: An Introduction for Scientists and Engineers;Åström,2021

3. Feedback Control in Systems Biology;Cosentino,2011

4. Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes

5. Safety and efficacy of a fully closed-loop control ventilation (IntelliVent-ASV®) in sedated ICU patients with acute respiratory failure: a prospective randomized crossover study

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3