Implementation of Thermal Event Image Processing Algorithms on NVIDIA Tegra Jetson TX2 Embedded System-on-a-Chip

Author:

Jabłoński BartłomiejORCID,Makowski DariuszORCID,Perek PiotrORCID

Abstract

Advances in Infrared (IR) cameras, as well as hardware computational capabilities, contributed towards qualifying vision systems as reliable plasma diagnostics for nuclear fusion experiments. Robust autonomous machine protection and plasma control during operation require real-time processing that might be facilitated by Graphics Processing Units (GPUs). One of the current aims of image plasma diagnostics involves thermal events detection and analysis with thermal imaging. The paper investigates the suitability of the NVIDIA Jetson TX2 Tegra-based embedded platform for real-time thermal events detection. Development of real-time processing algorithms on an embedded System-on-a-Chip (SoC) requires additional effort due to the constrained resources, yet low-power consumption enables embedded GPUs to be applied in MicroTCA.4 computing architecture that is prevalent in nuclear fusion projects. For this purpose, the authors have proposed, developed and optimised GPU-accelerated algorithms with the use of available software tools for NVIDIA Tegra systems. Furthermore, the implemented algorithms are evaluated and benchmarked on Wendelstein 7-X (W7-X) stellarator experimental data against the corresponding alternative Central Processing Unit (CPU) implementations. Considerable improvement is observed for the accelerated algorithms that enable real-time detection on the embedded SoC platform, yet some encountered limitations when developing parallel image processing routines are described and signified.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3