Abstract
Pressure drop across the moisture separator installed in the steam generator of a nuclear power plant affects the power generation efficiency, and so accurate pressure drop prediction is important in generator design. In this study, an empirical correlation is proposed for predicting the two-phase pressure drop through a moisture separator. To ensure the applicability of the correlation, a series of two-phase air-water experiments were performed, and the results of the present test and of the benchmark test of high-pressure steam-water were used in developing the correlation. Based on the experimental results, quality, dimensionless superficial velocity, density ratio of the working fluid, and the geometrical factor were considered to be important parameters. The two-phase pressure drop multiplier was expressed in terms of these parameters. The empirical correlation was found to predict the experimental results within a reasonable range.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference16 articles.
1. Steam separator modeling for various nuclear reactor transients
2. PWR steam generators
3. Convective Boiling and Condensation;Collier,1994
4. One Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-Phase Flow Regimes;Ishii,1977
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献