The Influence of Front Wing Pressure Distribution on Wheel Wake Aerodynamics of a F1 Car

Author:

Martins Daniel,Correia João,Silva AndréORCID

Abstract

The present study focuses on investigating the aerodynamic interaction between a three-element wing and wheel in ground effect, following the Formula One regulation change set for 2022, among which is the simplification of the front wing. This was accomplished by conducting a three-dimensional computational fluid dynamics analysis, using a Detached-Eddy Simulation approach, on a simplified one-quarter model of a Formula One racing car. The main goal was to examine how changing the front wing pressure distribution, by changing the incidence of the second flap, affected the wheel wake. The flow investigation indicated that the wheel wake is influenced by the flap configuration, which is mainly due to the fact that different flap configurations produce different upwash flow fields, leading to a variation of the separation point on top of the tire. As the separation point moves rearwards, the downwash generated in the central region (for a vertical plane) of the wheel wake increases incrementally, leading to a resultant wake that is shorter and further apart. The force investigation showed that the proximity between the region of instability (i.e., vortex breakdown) and the wing’s trailing edge influences the behavior of the transient oscillations, regarding the forces acting on the wing: detecting higher drag force fluctuations, when compared to downforce fluctuations.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3