Abstract
In the current state of maturity of severe accident codes, the time has come to foster the systematic application of Best Estimate Plus Uncertainties (BEPU) in this domain. The overall objective of the HORIZON-2020 project on “Management and Uncertainties of Severe Accidents (MUSA)” is to quantify the uncertainties of severe accident codes (e.g., ASTEC, MAAP, MELCOR, and AC2) when modeling reactor and spent fuel pools accident scenarios of Gen II and Gen III reactor designs for the prediction of the radiological source term. To do so, different Uncertainty Quantification (UQ) methodologies are to be used for the uncertainty and sensitivity analysis. Innovative AM measures will be considered in performing these UQ analyses, in addition to initial/boundary conditions and model parameters, to assess their impact on the source term prediction. This paper synthesizes the major pillars and the overall structure of the MUSA project, as well as the expectations and the progress made over the first year and a half of operation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference23 articles.
1. Main modelling features of the ASTEC V2.1 major version
2. Recent improvements in the system code package AC2 2019 for the safety analysis of nuclear reactors
3. Modular Accident Analysis Program (MAAP5.04),2016
4. MELCOR Computer Code Manuals Vol. 1: Primer and User’s Guide Version 2.1.6840 2015;Humphries,2015
5. Severe Accident Analyses: A historical review from the very early days to the near-term future;Herranz;Nucl. Esp.,2018
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献