A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction

Author:

Gutiérrez Leidy,Patiño JulianORCID,Duque-Grisales EduardoORCID

Abstract

Science seeks strategies to mitigate global warming and reduce the negative impacts of the long-term use of fossil fuels for power generation. In this sense, implementing and promoting renewable energy in different ways becomes one of the most effective solutions. The inaccuracy in the prediction of power generation from photovoltaic (PV) systems is a significant concern for the planning and operational stages of interconnected electric networks and the promotion of large-scale PV installations. This study proposes the use of Machine Learning techniques to model the photovoltaic power production for a system in Medellín, Colombia. Four forecasting models were generated from techniques compatible with Machine Learning and Artificial Intelligence methods: K-Nearest Neighbors (KNN), Linear Regression (LR), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). The results obtained indicate that the four methods produced adequate estimations of photovoltaic energy generation. However, the best estimate according to RMSE and MAE is the ANN forecasting model. The proposed Machine Learning-based models were demonstrated to be practical and effective solutions to forecast PV power generation in Medellin.

Funder

Institución Universitaria Pascual Bravo

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3