Abstract
Electrolyte stability can be improved by incorporating complexing agents that bind key decomposition intermediates and slow down decomposition. We show that hexamethyl-phosphoramide (HMPA) extends both the thermal stability threshold of sodium hexafluorophosphate (NaPF6) in dimethoxyethane (DME) electrolyte and the cycle life of double-layer capacitors. HMPA forms a stable complex with PF5, an intermediate in PF6 anion thermal degradation. Unbound, this intermediate leads to autocatalytic degradation of the electrolyte solution. The results of electrochemical impedance spectroscopy (EIS) and galvanostatic cycling measurements show large changes in the cell without the presence of HMPA at higher temperatures (≥60 °C). Fourier transform infrared spectroscopy (FTIR) on the liquid and gas phase of the electrolyte shows without HMPA the formation of measurable amounts of PF5 and HF. The complimentary results of these measurements proved the usefulness of using Lewis bases such as HMPA to inhibit the degradation of the electrolyte solution at elevated temperatures and potentially lead to improve cycle life of a nonaqueous capacitor. The results showed a large increase in capacitance retention during cycling (72% retention after 750,000 cycles). The results also provide evidence of major decomposition processes (0% capacitance retention after 100,000 cycles) that take place at higher temperatures without the additive of a thermal stability additive such as HMPA.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献