Greenhouse Gases Trade-Off from Ponds: An Overview of Emission Process and Their Driving Factors

Author:

Malyan Sandeep K.ORCID,Singh Omkar,Kumar Amit,Anand GaganORCID,Singh RajeshORCID,Singh SandeepORCID,Yu Zhiguo,Kumar Jhlaesh,Fagodiya Ram K.ORCID,Kumar AmitORCID

Abstract

Inland water bodies (particularly ponds) emit a significant amount of greenhouse gases (GHGs), particularly methane (CH4), carbon dioxide (CO2), and a comparatively low amount of nitrous oxide (N2O) to the atmosphere. In recent decades, ponds (<10,000 m2) probably account for about 1/3rd of the global lake perimeter and are considered a hotspot of GHG emissions. High nutrients and waterlogged conditions provide an ideal environment for CH4 production and emission. The rate of emissions differs according to climatic regions and is influenced by several biotic and abiotic factors, such as temperature, nutrients (C, N, & P), pH, dissolved oxygen, sediments, water depth, etc. Moreover, micro and macro planktons play a significant role in CO2 and CH4 emissions from ponds systems. Generally, in freshwater bodies, the produced N2O diffuses in the water and is converted into N2 gas through different biological processes. There are several other factors and mechanisms which significantly affect the CH4 and CO2 emission rate from ponds and need a comprehensive evaluation. This study aims to develop a decisive understanding of GHG emissions mechanisms, processes, and methods of measurement from ponds. Key factors affecting the emissions rate will also be discussed. This review will be highly useful for the environmentalists, policymakers, and water resources planners and managers to take suitable mitigation measures in advance so that the climatic impact could be reduced in the future.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3