Spatial–Temporal Data Imputation Model of Traffic Passenger Flow Based on Grid Division

Author:

Cai LiORCID,Sha CongORCID,He Jing,Yao Shaowen

Abstract

Traffic flows (e.g., the traffic of vehicles, passengers, and bikes) aim to reveal traffic flow phenomena generated by traffic participants in traffic activities. Various studies of traffic flows rely heavily on high-quality traffic data. The taxi GPS trajectory data are location data that include latitude, longitude, and time. These data are critical for traffic flow analysis, planning, infrastructure layout, and recommendations for urban residents. A city map can be divided into multiple grids according to the latitude and longitude coordinates, and traffic passenger flows data derived from taxi trajectory data can be extracted. However, random missing data occur due to weather and equipment failure. Therefore, the effective imputation of missing traffic flow data is a hot topic. This study proposes the spatio-temporal generative adversarial imputation net (ST-GAIN) model to solve the traffic passenger flows imputation. An adversarial game with multiple generators and one discriminator is established. The generator observes some components of the time-domain and regional traffic data vector extracted from the grid. It effectively imputes the missing values of the spatio-temporal traffic passenger flow data. The experimental data are accurate Kunming taxi trajectory data, and experimental results show that the proposed method outperforms five baseline methods regarding the imputation accuracy. It is significant and suggests the possibility of effectively applying the model to predict the passenger flows in some areas where traffic data cannot be collected for some reason or traffic data are randomly missing.

Funder

the National Natural Science Foundation of China

the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3