Interference Phenomena and Stimulated Emission in ZnO Films on Sapphire

Author:

Muslimov Arsen E.ORCID,Tarasov Andrey P.,Kanevsky Vladimir M.

Abstract

We studied the texturing, roughness, and morphology features of ZnO films grown on the R (11¯02)-, M (101¯0)-, A (112¯0)-, and C (0001)-planes of sapphire, as well as their optical and luminescent properties. We showed that the growth conditions, substrate orientation, and the presence of a buffer layer significantly affected the structure and morphology of the growing films, which was reflected in their optical and radiative properties. In particular, films grown on the A- and M- planes of sapphire showed the highest UV radiation brightness values and exhibited stimulated emissions upon pulsed photoexcitation. The dependence of the topography of the film surface on the substrate orientation allowed the formation of a smooth continuous film with pronounced interference properties using the R- and M- planes of sapphire. A change in the crystallographic orientation, as well as a significant enhancement in crystallinity and luminescence, were observed for ZnO films grown on R-plane sapphire substrates with a gold buffer layer as compared to films grown on bare substrates. At the same time, the use of gold facilitates a significant smoothing of the film’s surface, retaining its interference properties. The sensitivity of interference and laser properties to changes in the external environment, as well as the ease of fabrication of such structures, create prospects for their application as key elements of optical converters, chemical and biological sensors, and sources of coherent radiation.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3