High-Fluence Multi-Energy Ion Irradiation for Testing of Materials

Author:

Noga PavolORCID,Száraz ZoltánORCID,Kubiš Matej,Dobrovodský Jozef,Ferenčík Filip,Riedlmajer Róbert,Krsjak VladimirORCID

Abstract

Structural materials of the new generation of nuclear reactors, fission as well as fusion, must often cope with high production rates of transmutation helium. Their testing hence requires either a powerful source of fast neutrons or a high-fluence ion-irradiation facility providing sufficient amounts of high-energy helium to investigate its effect on the material. Most ion irradiation studies, however, concentrate on basic effects such as defect evolution or bubble swelling in narrow near-surface regions modified by ion bombardment. Studies on bulk samples with a relatively thick implanted region, which would enable, for instance, micromechanical testing, are underrepresented. This gap might be filled by high-fluence multi-energy ion irradiations modifying several tens of micrometres of the investigated substrate. High-energy ion accelerators providing reasonable currents with energies of tens of MeV are rarely employed in such studies due to their scarcity or considerable beamtime costs. To contribute to this field, this article reports a unique single-beam He implantation experiment aimed at obtaining quasi-uniform displacement damage across >60 μm with the He/dpa ratio roughly one order of magnitude above the typical spallation neutron target irradiation conditions. Some technical aspects of this irradiation experiment, along with recent developments and upgrades at the 6 MV Tandetron accelerator of the Slovak university of technology in Bratislava, are presented.

Funder

Slovak Research and Development Agency

VEGA

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. A Technology Roadmap for Generation IV Nuclear Energy Systems

2. GIF R&D Outlook for Generation IV Nuclear Energy Systems: 2018 Update;Stanculescu;Proceedings of the Generation IV International Forum,2018

3. Designing Radiation Resistance in Materials for Fusion Energy

4. Applications in Nuclear Physics and Nuclear Industry;Wheldon;Proceedings of the PSD12: The 12th International Conference on Position Sensitive Detectors,2021

5. High Flux Accelerator-Driven Neutron Facility https://www.birmingham.ac.uk/research/activity/nuclear/about-us/facilities/high-flux-neutron-facility.aspx

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3