Wet Etching of Quartz Using a Solution Based on Organic Solvents and Anhydrous Hydrofluoric Acid

Author:

Wan YangORCID,Luan Xinghe,Zhou Longzao,Wu Fengshun

Abstract

The quartz-crystal resonator is the core device for frequency control in modern communication systems and network technology. At present, in modern resonator blanks manufacturing, BOE solution is usually used as the etching solution, but its etching rate is relatively volatile, and the surface morphology of the blanks is prone to defects after etching, which brings certain difficulties to the deep-etching process of the wafer. To solve the above challenges, this paper systematically compares a BOE solution and anhydrous etching solution in terms of etching rate, surface morphology, and electrical properties of the blanks after etching. Seven groups of blanks were etched using different etching solutions with different etching conditions to verify their effect on the surface morphology and electrical properties of quartz blanks. The experimental results suggest that the application of anhydrous etching solution has achieved better surface morphology and electrical properties and can be more suitable for application in batch manufacturing. In general, when using anhydrous etching solution, it is possible to reduce surface roughness by up to 70% and equivalent resistance by 32%, and the etch rate is almost 10 times lower than BOE solution under the same temperature, which is more conducive to the rate control of wafers in the etching process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. The Effect of Surface Roughness on the Performance of Quartz Crystal Resonators;Ling;Proceedings of the 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA),2019

2. Next Generation AT-Cut Quartz Crystal Sensing Devices

3. Quartz: a material for microdevices

4. Quartz crystal resonators and oscillators for frequency control and timing applications: A tutorial;Vig;NASA Sti/Recon Tech. Rep. N,1994

5. Basic material quartz and related innovations;Ballato,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3