Calibration of Arrhenius Constitutive Equation for B4Cp/6063Al Composites in High Temperatures

Author:

Sun JianORCID,Chen Yunhui,Liu Fuguang,Yang Erjuan,Wang Sijia,Fu HanguangORCID,Qi Zhixu,Huang Sheng,Yang Jian,Liu Hui,Cheng Xiaole

Abstract

Isothermal-compression tests of B4Cp/6063Al composites containing 20 vol.% B4C were performed using a Gleeble-3500 device, at strain rates ranging from 0.001 s−1 to 1 s−1 and deformation temperatures ranging from 723 K to 823 K. The results showed that the high-temperature flow stress of B4Cp/6063Al composites increases with the decrease in deformation temperature or the increase in the strain rate. After friction correction, the friction corrected stress was less than the original experimental stress. At the initial stage of deformation, the difference between the rheological stress after friction correction and the measured rheological stress is small, but with the continuous increase in the strain, the difference between the rheological stress after friction correction and the measured rheological stress is grows. Under the same strain, the difference between the rheological stress before and after friction correction becomes more significant with the decrease in the deformation temperature and the increase in the strain rate. Next, the material constants (i.e., α, β, Q, A, n) of B4Cp/6063Al composites were calibrated based on the experimental data, and a constitutive equation was established based on Arrhenius theory. The experimental values and predicted values of the stress–strain curves are in good agreement with the stress–strain curves of the finite element simulation, and the validity of the constitutive equation was verified.

Funder

Xi’an key laboratory of modern intelligent textile equipment in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3