Research on Vibration Control Technology of Robot Motion Based on Magnetorheological Elastomer

Author:

Huang Xuegong,Zhai Yutong,He Guisong

Abstract

The vibration and impact of a humanoid bipedal robot during movements such as walking, running and jumping may cause potential damage to the robot’s mechanical joints and electrical systems. In this paper, a composite bidirectional vibration isolator based on magnetorheological elastomer (MRE) is designed for the cushioning and damping of a humanoid bipedal robot under foot contact forces. In addition, the vibration isolation performance of the vibration isolator was tested experimentally, and then, a vibration isolator dynamics model was developed. For the bipedal robot foot impact, based on the vibration isolator model, three vibration reduction control algorithms are simulated, and the results show that the vibration damping effect can reach 85%. Finally, the MRE vibration isolator hardware-in-the-loop-simulation experiment platform based on dSPACE has been built to verify the vibration reduction control effect of the fuzzy PID algorithm. The result shows the vibration amplitude attenuates significantly, and this verifies the effectiveness of the fuzzy PID damping control algorithm.

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Research on Cushioning and Vibration Damping Mechanism of Goat Hoof Box and Design of Bionic Cushioned Foot for Footed Robot;Li;Master’s Thesis,2017

2. A study of the walking stability of a humanoid robot;Shen;J. Harbin Eng. Univ.,2004

3. Progress in the study of the mechanical properties of porous metals and their sandwich structures;Jing;Mech. Pract.,2015

4. Multivariate Coupled Cushioning Mechanism of the Canine Leg-Foot System and Its Bionic Study;Miao;Ph.D. Thesis,2020

5. Towards a bio-inspired leg design for high-speed running

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3