Dynamic Response and Service Life of Tunnel Bottom Structure Considering Hydro-Mechanical Coupling Effect under the Condition of Bedrock Softening

Author:

Wang Dengke,Luo Jianjun,Li Feilong,Wang Guanqing,Wang Lei,Su Jie,Gao ZhenORCID,Yin Kunyao

Abstract

Due to the long-term coupling effect of a train load and groundwater, the surrounding rock at the tunnel bottom will soften in a certain range and the mechanical parameters of the surrounding rock will decrease, causing the uneven distribution of the confining pressure at the tunnel bottom and affecting the base concrete structure service life. In this research, the method of combining field tests and numerical simulation is adopted, and the vertical displacement, vertical acceleration, and maximum and minimum principal stresses are used as evaluation indicators. The dynamic response law of the base structure with the softened surrounding rock of the heavy-duty train is analyzed, and the Miner linear cumulative damage theory is introduced to obtain the service life of the tunnel bottom structure under different softening conditions. The results show that with the decrease in the softening coefficient and the increase in the softening thickness of the bedrock, the displacement, acceleration, and principal stress response indexes of the structure increase by varying degrees, and the service life of the base structure decreases almost linearly. The maximum vertical displacement, acceleration, and tensile stress are located directly below the track, and the maximum compressive stress is located at the connection between the inverted arch and the side wall. According to the predicted value of the service life, the reliability of the base structure is divided into four levels: safety, warning, danger, and serious danger.

Funder

Jie Su

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3