Abstract
In this study, ultra-high-speed laser cladding (UHSLC) and traditional low-speed laser cladding (LSLC) were employed to prepare high-quality Inconel625 coatings on 27SiMn substrates. UHSLC has cladding speeds of 30 m/min, which are 15 times faster than those of LSLC, and it produces a much greater cladding efficiency, which is 13.9 times greater than LSLC. The microstructure of the Inconel625 coatings was investigated in detail utilizing field emission scanning electron microscopy (FESEM) and electron probe microanalyzer (EPMA). According to the FESEM results, UHSLC Inconel625 coatings have more refined crystals than LSLC Inconel625 coatings. Nevertheless, the EPMA results indicate that the UHSLC Inconel625 coatings exhibit much more severe elemental segregation. Moreover, the hardness, wear and corrosion resistance of Inconel625 coatings are significantly enhanced by increasing the laser cladding speed. Furthermore, the reasons for the differences in microstructure and properties of Inconel625 coatings prepared by UHSLC and LSLC were clarified by finite element simulation. UHSLC technique is, therefore, more suitable for preparing Inconel625 coatings on 27SiMn steel surfaces than LSLC.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
State Key Lab of Advanced Metals and Materials
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献