Paper-Based Humidity Sensor for Respiratory Monitoring

Author:

Ma Xiaoxiao,Zhang Shaoxing,Zou Peikai,Li Ruya,Fan Yubo

Abstract

Flexible respiratory monitoring devices have become available for outside-hospital application scenarios attributable to their improved system wearability. However, the complex fabrication process of such flexible devices results in high prices, limiting their applications in real-life scenarios. This study proposes a flexible, low-cost, and easy-processing paper-based humidity sensor for sleep respiratory monitoring. A paper humidity sensing model was established and sensors under different design parameters were processed and tested, achieving high sensitivity of 5.45 kΩ/%RH and good repeatability with a matching rate of over 85.7%. Furthermore, the sensor patch with a dual-channel 3D structure was designed to distinguish between oral and nasal breathing from origin signals proved in the simulated breathing signal monitoring test. The sensor patch was applied in the sleep respiratory monitoring of a healthy volunteer and an obstruct sleep apnea patient, demonstrating its ability to distinguish between different respiratory patterns as well as various breathing modes.

Funder

National Key R&D Program of China

Hygiene and Health Development Scientific Research Fostering Plan of Haidian District Beijing

National College Students Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3