Design of Bio-Absorbent Systems for the Removal of Hydrocarbons from Industrial Wastewater: Pilot-Plant Scale

Author:

Silva-Castro Gloria Andrea,Rodríguez-Calvo Alfonso,Robledo-Mahón TatianaORCID,Aranda ElisabetORCID,González-López Jesús,Calvo ConcepciónORCID

Abstract

The objective of this study was the development and design of a treatment system at a pilot-plant scale for the remediation of hydrocarbons in industrial wastewater. The treatment consists of a combined approach of absorption and biodegradation to obtain treated water with sufficient quality to be reused in fire defense systems (FDSs). The plant consists of four vertical flow columns (bioreactors) made of stainless steel (ATEX Standard) with dimensions of 1.65 × 0.5 m and water volumes of 192.4 L. Each bioreactor includes a holder to contain the absorbent material (Pad Sentec polypropylene). The effectiveness of the treatment system has been studied in wastewater with high and low pollutant loads (concentrations higher than 60,000 mg L−1 of total petroleum hydrocarbons (TPH) and lower than 500 mg L−1 of TPHs, respectively). The pilot-plant design can function at two different flow rates, Q1 (180 L h−1) and Q2 (780 L h−1), with or without additional aeration. The results obtained for strongly polluted wastewaters showed that, at low flow rates, additional aeration enhanced hydrocarbon removal, while aeration was unnecessary at high flow rates. For wastewater with a low pollutant load, we selected a flow rate of 780 L h−1 without aeration. Different recirculation times were also tested along with the application of a post-treatment lasting 7 days inside the bioreactor without recirculation. The microbial diversity studies showed similar populations of bacteria and fungi in the inlet and outlet wastewater. Likewise, high similarity indices were observed between the adhered and suspended biomass within the bioreactors. The results showed that the setup and optimization of the reactor represent a step forward in the application of bioremediation processes at an industrial/large scale.

Funder

Compañía Logística de Hidrocarburos

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3