Biosynthesized Iron Oxide Nanoparticles (Fe3O4 NPs) Mitigate Arsenic Toxicity in Rice Seedlings

Author:

Khan Sehresh,Akhtar Nazneen,Rehman Shafiq Ur,Shujah ShaukatORCID,Rha Eui Shik,Jamil Muhammad

Abstract

Arsenic (As) contamination has emerged as a serious public health concern worldwide because of its accumulation and mobility through the food chain. Therefore, the current study was planned to check the effect of Bacillus subtilis-synthesized iron oxide nano particles (Fe3O4 NP) on rice (Oryza Sativa L.) growth against arsenic stress (0, 5, 10 and 15 ppm). Iron oxide nanoparticles were extracellular synthesized from Bacillus subtilis with a desired shape and size. The formations of nanoparticles were differentiated through UV-Visible Spectroscopy, FTIR, XRD and SEM. The UV-Visible spectroscopy of Bacillus subtilis-synthesized nanoparticles showed that the iron oxide surface plasmon band occurs at 268 nm. FTIR results revealed that different functional groups (aldehyde, alkene, alcohol and phenol) were present on the surface of nanoparticles. The SEM image showed that particles were spherical in shape with an average size of 67.28 nm. Arsenic toxicity was observed in seed germination and young seedling stage. The arsenic application significantly reduced seed germination (35%), root and shoots length (1.25 and 2.00 cm), shoot/root ratio (0.289), fresh root and shoots weight (0.205 and 0.260 g), dry root and shoots weight (6.55 and 6.75 g), dry matter percentage of shoot (12.67) and root (14.91) as compared to control. Bacillus subtilis-synthesized Fe3O4 NPs treatments (5 ppm) remarkably increased the germination (65%), root and shoot length (2 and 3.45 cm), shoot/root ratio (1.24) fresh root and shoot weight (0.335 and 0.275 mg), dry root and shoot weight (11.75 and 10.6 mg) and dry matter percentage of shoot (10.40) and root (18.37). Results revealed that the application of Fe3O4 NPs alleviated the arsenic stress and enhanced the plant growth. This study suggests that Bacillus subtilus-synthesized iron oxide nanoparticles can be used as nano-adsorbents in reducing arsenic toxicity in rice plants.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3